Contribution to the Crystal Chemistry of $M^{1} M^{\mathrm{II}} \mathrm{PO}_{4}$ Monophosphates ($M^{\mathbf{\prime}}=\mathbf{K}, \mathbf{R b}, \mathbf{C s} ; M^{\mathbf{I I}}=\mathbf{B e}$)

R. MASSE and A. DURIF
Laboratoire de Cristallographie, Centre National de la Recherche Scientifique, Laboratoire associé à l'USTMG, 166 X, 38042 Grenoble Cedex, France

Received June 22, 1987; in revised form September 14, 1987

Abstract

Single-crystal growth experiments and crystal structures of $\mathrm{KBePO}_{4}, \mathrm{RbBePO}_{4}$, and CsBePO_{4} are reported. KBePO_{4} is orthorhombic, $P c 2_{1} n$, with $a=8.506(4), b=4.937(4), c=8.344(5) \AA$, and $Z=4$. RbBePO_{4} is orthorhombic, $P c m n$ or $P c 2_{1} n$, with $a=8.636(3), b=5.012(2), c=8.587(3) \AA$, and $Z=4$. CsBePO_{4} is orthorhombic, Pnam with $a=8.713(4), b=8.836(5), c=5.147(4) \AA$, and $Z=4$. The crystal structures of KBePO_{4} and CsBePO_{4} have been solved with respective final R values of 0.043 (472 reflections) and 0.027 (717 reflections). They are closely related to that of β-tridymite. © 1988 Academic Press, Inc.

Introduction

The crystal chemistry of $M^{\mathrm{I}} M^{\mathrm{II}} \mathrm{PO}_{4}$ monophosphates with $M^{1}=\mathrm{NH}_{4}^{+}, \mathrm{Ag}^{+}$, and alkali metals is far from being extensively known. Many of these compounds are polymorphic, one of the forms being frequently noncentric leading to possible applications in the fields of ferroelectrics or nonlinear optics.

Various classical methods have been used for their preparation:
-direct synthesis of material in the form of crystalline powder, melting, and slow cooling;
-direct synthesis with the addition of a compound lowering the melting point;
-flux method;
—hydrothermal synthesis.
The main difficulty for preparation rests on the high melting points of these com-0022-4596/88 \$3.00

TABLE I
X-Ray Powder Diagrams and Cell Parameters of KBePO_{4} and RbBePO_{4}

KBePO_{4}												RbBePO_{4}			
$h k l$	$d_{\text {obs }}$	$d_{\text {calc }}$	$I_{\text {obs }}$		$h k l$	$d_{\text {obs }}$	$d_{\text {calc }}$	$I_{\text {obs }}$							
101	5.90	5.94	31		101	6.09	6.09	35							
002	4.15	4.16	17		200	4.32	4.32	35							
111	3.79	3.79	33		111	3.87	3.87	29							
201	3.78	3.78	49		012	3.26	3.26	5							
012	3.17	3.17	7		112	3.05	3.06	100							
211	3.00	3.00	100		301	2.727	2.729	56							
112	2.973	2.976	86		020	2.508	2.506	65							
301	2.678	2.679	8		310	2.496	2.496	65							
103	2.637	2.636	11		220	2.168	2.167	65							
212	2.545	2.544	2		400	2.160	2.159	53							
020	2.465	2.464	24		004	2.149	2.147	44							
310	2.455	2.454	48		303	2.029	2.029	18							
302	2.339	2.339	5	222	1.933	1.935	20								
121	2.276	2.276	2		114	1.924	1.924	20							
220	2.134	2.131	14		321	1.847	1.846	12							
400	2.122	2.122	28		123	1.841	1.842	12							
022	2.117	2.120	19												
004	2.083	2.080	18												

Note. System orthorhombic; formula units, 4. Space group $P c 2_{1} n$: $\mathrm{KBePO}_{4}, 8.489(5), 4.929(3), 8.318(5) \AA$. Space groups Pcmn or $\mathrm{Pc}_{1} n$: $\mathrm{RbBePO}_{4}, 8.636(3)$, 5.012(2), 8.587(3) A.
CsBePO_{4} preparations by mixing, respectively, $\mathrm{Rb}_{3} \mathrm{PO}_{4}$ and $\mathrm{Cs}_{3} \mathrm{PO}_{4}$ with BeF_{2}. All crystals have a prismatic habit.

Crystal Data

Approximate unit cells and possible space groups for these compounds have been determined by single-crystal film techniques. The cell parameters were refined by using the θ angle of 25 reflections collected with an automatic four-circles X-ray diffractometer. $\mathrm{KBePO}_{4}: a=8.506(4), b=$ 4.937(4), $c=8.344(5) \AA$; space group, $P c 2_{1} n$ or $P c m n ; Z=4 ; d_{x}=2.712$. Cs $\mathrm{BePO}_{4}: a=8.713(4), b=8.836(5), c=$ 5.147 (4) \AA; space group, Pnam or Pna2 2_{1}; $Z=4 ; d_{x}=3.971$. Two other refinements for KBePO_{4} and RbBePO_{4} have been made
starting from X-ray powder diffractometer data. The results are mentioned in Table I.

Crystal Structure Determination

The parameters used for the X-ray diffraction data collections are reported in Table II. Lorentz and polarization corrections were made. No absorption correction was applied. The KBePO_{4} and CsBePO_{4} crystal structures were solved using the Patterson method and comparison with the structure of the CsMgPO_{4} monophosphate (1). The extinction correction was applied using the formula $\left(F_{\mathrm{c}}\right) \cdot\left(1+g I_{\mathrm{c}}\right)^{-1}$ in the various refinements (2) ($g=$ extinction parameter).

$$
\begin{array}{ll}
g=0.15 \times 10^{-5} & \text { for } \mathrm{KBePO}_{4} \\
g=2.02 \times 10^{-6} & \text { for } \mathrm{CsBePO}_{4}
\end{array}
$$

A unit weighting scheme was used throughout the least-squares refinements (3).
(1) KBePO_{4}. Two crystalline forms of KBePO_{4} were found by Jaulmes and Durif (4). The first parameter cell determination of the low-temperature form was made by Schultz (5). The high-temperature form can be obtained by following the preparation

TABLE II
Parameters Used for the X-Ray Diffraction Data Collection

	KBePO_{4}	CsBePO_{4}
Apparatus	Enraf-Nonius CAD4	Philips PW1100
Monochromator	Graphite plate	Graphite plate
Wavelength (\AA)	MoK ${ }_{\text {(0.71073) }}$	AgK $\alpha^{(0.56083}$)
Scan mode	ω	$\omega / 2 \theta$
Scan speed (\%/sec)	0.018 to 0.042	0.02
Total background measurement (sec)	14 to 33	
Scan width (${ }^{\circ}$)	1.2	1.0
θ range (${ }^{\circ}$)	3-30	3-30
Intensity reference reflections	132, $1 \overline{3} 2$	323, 323
Number of collected reflections	$632(h, k, l)$	$978(h, k, l)$
Observed independent reflections	477	883
Crystal size (mm) $\mu\left(\mathrm{cm}^{-1}\right)$	$\begin{aligned} & 0.13 \times 0.16 \times 0.16 \\ & 18 \end{aligned}$	$\begin{aligned} & 0.13 \times 0.16 \times 0.19 \\ & 50.3 \end{aligned}$

TABLE III
Atomic Parameters and $\boldsymbol{B}_{\text {eq }}$ FOR KBePO_{4}

Atom	$x(\sigma)$	$y(\sigma)$	$z(\sigma)$	$B_{\mathrm{cq}}(\sigma) \AA^{2}$
K	$0.2092(2)$	$0.2500(0)$	$-0.0020(2)$	$1.92(3)$
P	$0.4185(2)$	$0.7361(7)$	$0.1910(2)$	$1.04(3)$
01	$0.4589(5)$	$0.023(1)$	$0.2519(6)$	$1.4(1)$
02	$0.4528(5)$	$1.039(1)$	$0.7516(6)$	$1.3(1)$
03	$0.4072(5)$	$0.736(2)$	$0.0090(5)$	$1.7(1)$
04	$0.2614(6)$	$0.645(1)$	$0.2600(6)$	$1.5(1)$
Be	$0.0891(8)$	$0.756(2)$	$0.3169(7)$	$0.9(1)$

previously described. The investigation of Patterson, Fourier, and difference Fourier syntheses allowed us to locate all the atoms. The space group Pc2 ${ }_{1} n$ was imposed by the structure refinement and confirmed by a piezoelectricity test. The final R value for 472 independent reflections is 0.043 . One hundred fifty-five reflections such that $F_{0}^{2}<2 \sigma\left(F_{0}^{2}\right)$ were eliminated. Strong reflections badly corrected because of the attenuator were rejected. Tables III and IV give the atomic parameters, $B_{\text {eq }}$, and anisotropic temperature factors.
(2) CsBePO_{4}. The same procedure was followed for this compound. The space group used in the refinement was Pnam. The final R value is 0.027 for 717 reflections. One hundred sixty-six reflections having $F_{o}^{2}<4 \sigma\left(F_{o}^{2}\right)$ were eliminated. The positional parameters, the $B_{\text {eq }}$ values, and the anisotropic temperature factors are reported in Tables V and VI. ${ }^{1}$

Structure Descriptions

(1) KBePO_{4}. The structure of KBePO_{4} is related to that of β-tridymite (6). In this structure, the SiO_{4} tetrahedra are arranged

[^0]alternatively with a vertex up and a vertex down in order to form a hexagonal framework. In the KBePO_{4} monophosphate, the SiO_{4} tetrahedra are replaced by BeO_{4} and PO_{4} tetrahedra: three tetrahedra with three vertices up alternate with three tetrahedra having their three vertices down; a pseudohexagonal framework (Fig. 1) is obtained in this case. The Be and P atoms occupy adjacent tetrahedral sites in an ordered way. A double sheet of corners sharing BeO_{4} and PO_{4} tetrahedra generates cages inside of which the K atoms are located. This structure is similar to RbCoPO_{4} (1) or $\mathrm{NH}_{4} \mathrm{LiSO}_{4}$ (7). Table VII summarizes the interatomic distances and bond angles. The PO_{4} tetrahedron is regular with an average distance $\langle\mathrm{P}-\mathrm{O}\rangle=1.532 \AA$. The BeO_{4} tetrahedron is slightly distorted $\langle\mathrm{Be}-\mathrm{O}\rangle=1.620 \AA$. The same situation is true for the CoO_{4} tetrahe-

Fig. 1. Projection along the c axis of the partial atomic arrangement of KBePO_{4}. Only one tetrahedral layer is shown.

TABLE IV
Refined Temperature Factor Expressions (β 's) for KBePO ${ }_{4}$

Atom	β_{11}	β_{22}	β_{33}	β_{12}	β_{13}	β_{23}
K	$0.0079(1)$	$0.0214(4)$	$0.0050(1)$	$-0.0049(8)$	$0.0003(3)$	$0.002(1)$
P	$0.0038(1)$	$0.0126(4)$	$0.0028(1)$	$0.000(1)$	$0.0002(3)$	$0.001(1)$
01	$0.0059(6)$	$0.015(2)$	$0.0038(5)$	$0.001(2)$	$0.0013(9)$	$-0.005(2)$
02	$0.0051(5)$	$0.013(2)$	$0.0044(5)$	$-0.002(2)$	$-0.0022(9)$	$0.002(2)$
03	$0.0083(5)$	$0.018(1)$	$0.0038(4)$	$-0.002(3)$	$-0.0006(10)$	$-0.010(4)$
04	$0.0034(5)$	$0.014(1)$	$0.0081(6)$	$-0.004(2)$	$0.0035(10)$	$0.000(2)$
Be	$0.0043(7)$	$0.007(2)$	$0.0028(6)$	$0.000(4)$	$0.000(1)$	$-0.005(4)$

$$
\text { Note. } T=\exp -\left(\beta_{11} h^{2}+\beta_{22} k^{2}+\beta_{33} l^{2}+\beta_{12} h k+\beta_{13} h l+\beta_{23} k l\right)
$$

dra in RbCoPO_{4} (1). A complete structural study of the three forms of CsZnPO_{4} (8) and their ferroic properties (9) suggest that KBePO_{4} and CsZnPO_{4} (form II) are isostructural and KBePO_{4} may reveal ferroelectric properties.
(2) CsBePO_{4} (Fig. 2). The CsBePO_{4} framework is also related to that of β-tridymite (6) and can be compared to KBePO_{4} (Fig. 1). The CsBePO_{4} structure is more symmetrical than that of KBePO_{4} and isostructural with CsMgPO_{4} (1). The interatomic distances and bond angles show that the PO_{4} tetrahedron is regular with an average $\langle\mathrm{P}-\mathrm{O}\rangle$ distance of $1.521 \AA$ (Table VIII). The BeO_{4} tetrahedron is more regular than in KBePO_{4}. $\langle\mathrm{Be}-\mathrm{O}\rangle=1.627 \AA$.
(3) RbBePO_{4}. This compound is probably isostructural with KBePO_{4} as suggested by the similarity of the X-ray powder diagrams, cell parameters, and space groups. No piezoelectrical signal was detected. The

TABLE V
Positional Parameters and Their Estimated
Standard Deviations for CsBePO_{4}

Atom	$x(\sigma)$	$y(\sigma)$	$z(\sigma)$	$B_{\mathrm{eq}}(\sigma) \AA^{2}$
Cs	$-0.00637(8)$	$0.19614(8)$	0.250	$0.961(7)$
P1	$0.1829(3)$	$0.4161(3)$	0.750	$0.37(3)$
01	$0.7633(5)$	$0.4978(9)$	$0.009(1)$	$0.99(6)$
02	$0.257(1)$	$0.261(1)$	0.750	$1.4(1)$
03	$0.0105(9)$	$0.4000(9)$	0.750	$1.3(1)$
Bc	$0.326(2)$	$0.090(2)$	0.750	$1.0(2)$

refinement of the structure should give the solution with regard to the space group, either Pcmn or Pc2 n.
These compounds belong to the large family of $M^{1} M^{\text {® }} \mathrm{PO}_{4}$ monophosphates. About 20% of these materials have a noncentrosymmetrical structure. They belong

Fig. 2. Projection along the a axis of the partial atomic arrangement of CsBePO_{4}. Only one tetrahedral layer is shown. a, b, and c are cell parameters in Pnam representation of space group $D_{2 h}^{16}$.

TABLE VI
Refined Temperature Factor Expressions (β 's) for CsBePO_{4}

Atom	β_{11}	β_{22}	β_{33}	β_{12}	β_{13}	β_{23}
Cs	$0.00320(4)$	$0.00320(4)$	$0.0086(1)$	$-0.0001(2)$	0	0
P1	$0.0015(2)$	$0.0010(2)$	$0.0031(6)$	$0.0005(4)$	0	0
01	$0.0030(4)$	$0.0045(5)$	$0.006(1)$	$0.000(1)$	$-0.000(2)$	$-0.006(1)$
02	$0.00431(8)$	$0.0015(7)$	$0.023(3)$	$0.002(1)$	0	0
03	$0.0015(6)$	$0.0057(8)$	$0.015(2)$	$0.000(2)$	0	0
Be	$0.003(1)$	$0.004(1)$	$0.010(3)$	$-0.001(2)$	0	0

Note. $T=\exp -\left(\beta_{11} h^{2}+\beta_{22} k^{2}+\beta_{33} l^{2}+\beta_{12} h k+\beta_{13} h l+\beta_{23} k l\right)$.

TABLE VII
Main Interatomic Distances and Bond Angles in KBePO_{4}

K-0(1)	$2.742(5) \AA$	K-0(3) 2.933(6)	K-0(1)	3.203(5)
K-0(2)	3.099(11)	K-0(4) 2.964(5)	K-0(1)	3.271(5)
K-0(2)	2.731(14)	K-0(4) 2.796(5)	K-0(2)	3.336(11)
K-0(3)	3.047(6)		K-0(3)	3.264(6)
PO_{4} tetrahedron				
P	0(1)	O(2)	0(3)	0(4)
0 (1)	1.542(8)	$2.503(7)$	2.512(8)	2.509(7)
$0(2)$	108.5(9)	1.541(10)	2.520 (7)	$2.488(6)$
0 (3)	110.1(4)	$110.8(6)$	$1.521(5)$	$2.475(6)$
$0(4)$	109.9(3)	108.7(9)	108.8(3)	1.522(5)
BeO_{4} tetrahedron				
Be	O(1)	0 (2)	O(3)	$0(4)$
0(1)	1.697(9)	$2.658(7)$	$2.673(7)$	2.646 (7)
O(2)	110.1(6)	1.542(10)	$2.646(8)$	2.666 (7)
0(3)	108.0(5)	$114.4(6)$	1.606 (6)	$2.564(6)$
0(4)	105.1(5)	114.0(5)	104.6(4)	$1.635(8)$

to the space groups $P 2_{1}, P n a 2_{1}$, or $P 6_{3}$. Piezoelectric and ferroelectric properties may be found. The noncentrosymmetrical $M^{\mathrm{I}} \mathrm{M}^{\mathrm{II}} \mathrm{XO}_{4}$ ($X=\mathrm{S}, \mathrm{P}, \mathrm{As}$) phases, already investigated, are known as "light ferroelectrics." The study of ferroic transitions in the $M^{\mathrm{I}} \mathrm{BePO}_{4}$ family should be promising.

References

1. E. L. Rakotomahanina Ralaisoa, Thesis, Université Scientifique et Médicale de Grenoble, No. ordre A. 0.7697 (1972).

TABLE VIII
Main Interatomic Distances and Bond Angles IN CsBePO_{4}

2. G. H. Stout and L. H. Jensen, 'X-ray Structure Determination," MacMillan \& Co., Lundon (1968).
3. Structure Determination Package, EnrafNonius, Delft (1977).
4. S. Jaulmes and C. Durif, C.R. Acad. Sci. Paris 262, 1530 (1966).
5. E. Schultz, Z. Kristallogr. 132, 450 (1970).
6. Frondel, C., Ed., "Dana's System of Mineralogy," 7th ed., Vol. 3, 259, Wiley, New York (1962).
7. W. A. Dollase, Acta Crystallogr. Sect. B 25, 2298 (1969).
8. D. Blum, A. Durif, and M. T. AverbuchРоиснот, Ferroelectrics 69, 283 (1986).
9. D. Blum, J. C. Peuzin, and J. Y. Henry, Ferroelectrics 61, 265 (1984).

[^0]: ${ }^{1}$ Lists of structure factors are available on request to the authors.

